Implications of Ingredient Availability – Opportunities for Vegetable Protein Meals John Spragg JCS Solutions

NUTRITION MEETING ANIMAL NUTRIENT REQUIREMENTS FOR DEFINED PERFORMANCE CRITERIA

STOCKFEED INDUSTRY BALANCES

CUSTOMER (LIVESTOCK PRODUCER) EXPECTATIONS

VERSUS COMMERCIAL REALITY

SUPPLY CHAIN ROLE

Estimated meal usage in 2004 (data from ARA and AOF)

Meal Type	'000 Tonnes	%
Animal Protein Meals	373	33.2%
Soybean Meal (domestic + imported)	350	31.1%
Canola (75% Sol, 20% Exp, 5% Cold)	225	20.0%
Sunflower	24	2.1%
Cotton (plus 140 kt whole seed)	130	11.6%
Copra	22	2.0%
	1124	

Plus pulses – peas, lupins, beans

Estimated meal usage

Livestock Sector	Feed tonnes	Veg. protein usage - tonnes	Use rate - %
Pigs	1,698,000	233,000	13.7%
Poultry	2,730,000	340,600	12.5%
Dairy	3,010,000	150,000	5.0%
Feedlots	2,720,000	135,000	5.0%
Other	450,000	33,700	7.5%
Total	10,608,000	892,300	8.4%

JCS Solutions estimates

FACTORS INFLUENCING PROTEIN MEAL CURRENT USAGE

- INGREDIENT AVAILABILITY
- PRICE
- CONSISTENCY
- PROTEIN QUALITY

FEED INDUSTRY CAPACITY TO RAPIDLY SWITCH RAW MATERIAL USE

	High Animal Brotoin	Typical	No Animal	
	۲ioteini %	0/	°/	
Barlov	70 56 5	70	17.8	
	00.0	41.1 05.0	17.0	
wneat	22.3	25.6	39.3	
Peas	0	10	20	
Canola Meal	0	8	10	
Soybean Meal	4.4	6.1	8.5	
Meat Meal	9.3	6.4	0	
Fish Meal	4	0	0	
Blood Meal	2	1	0	
Tallow	1	1	1	
Limestone	0	0	1.2	
DCP	0	0	1.3	
Salt	0.01	0.25	0.36	
Methionine	0.01	0.03	0.04	
Lysine	0.18	0.23	0.25	
Threonine	0.04	0.04	0.05	
Premix	+	+	+	

PIG GROWER FEED

Protein (%)	20.1
DE (MJ/kg)	13.5
Fat (%)	3.9
Calcium (%)	Min 0.9
Phos. (%)	Min .65
Sodium (%)	0.17
Lysine (%)	1.17
M+C (%)	0.7
Threonine (%)	0.74

Computer formulations

- •Breakpoints defining use or non use prices
- Parametrics defining how much to use at differing prices
- •Value for each raw material relative to others
- •Varies for each feed type and specification

		=== J	CS Solutio	ons	(3601)					
: : AUSIMIX (RUN) : 01-April-2002/216.2	FEED MILL MAST (1) Pla	ER nt=0088	{4} JULY John	2005		OPTIMIZATI	ON RESULTS	15	:16 02/08/05	: 0014 : :
: SP: 60002 PIG GROWER FEEI	D		100.0	 %	, 1000.0	Kg (Reco	st: 325.61) Optima	al cost: 2	88.96 :
INCLUDED RAW MATERIALS	Ŷ	Kg	Cost	Lim	Minimum	Maximum	Lower Cost	New %	Upper Cost	New %
10200 BARLEY 11.0	56.4781	564.781	200.0			80.0	176.945	61.8421	225.149	56.3587
14200 WHEAT 13.0	22.3187	223.187	210.0			90.0	180.367	22.42	232.075	1.5651
28450 PEAS-FIELD 22.0	0.0001	0.001	230.0	MAX		0.0001			248.589	0.0
36220 CANOLA MEAL 36.0	0.0001	0.001	280.0	MAX		0.0001			447.559	0.0
37840 SOYBEAN MEAL 48.0	4.3888	43.888	650.0		0.0	99.0	450.709	5.0093	764.628	4.3283
40050 BLOOD MEAL 85.0	2.0	20.0	600.0	MAX		2.0			1177.189	1.2377
40700 MEAT MEAL 50.0	9.3083	93.083	320.0		0.0	10.0	-2298.184	9.3083	349.454	5.1097
41190 FISH MEAL 60	4.0	40.0	820.0	min	4.0	5.0	723.028	4.0715		

Protein meal use trends

> Reducing inclusion meat meal – consistency in quality, salmonella, forward supply variability

Reduced recycling poultry meals back to poultry

> Increased use of synthetic amino acids – lower price, Chinese influence

> Poor harvest supplies and competing demand - peas, lupins

FACTORS FAVOURING VEGETABLE MEALS

1. BSE – Bovine spongiform encephalopathy

period' of perhaps decades of clinical signs of vCJD.

Mad Cow Disease (BSE)

@ Copyright 2001, arcusdesign

Australian BSE Control Programme

TSE FAP

- •Quarantine AQIS stop entry Livestock, stockfeed, meat
- •Surveillance Sampling & Testing suspect cattle and sheep NTSESP
- •Tracking live cattle imported and zoo animals

•Feed Ban – RAM (Restricted Animal Material) in ruminant feeds Site audits -renderers, mills, end user farms, retailers Sampling and Testing

Ruminant Feed Ban Issues

- •Feed mills must ensure no cross transference RAM into ruminant feeds
- •Mills not designed to be contamination free
- Expectations of zero tolerance
- Assays to identify small quantities
- •Compliance pressure being applied to feed manufacturers

Potential Australian Scenarios

1. Ban MBM use – Eliminates the BSE risk

= EU ban on feeding animal proteins to livestock

2,500,000 tonnes of wet material processed by renderers

Value of rendered animal protein \$500M annually, approx 50% exported, loss of foreign income.

Environmental disposal problem

NOT A LIKELY OUTCOME WHILST WE DO NOT HAVE BSE

Potential Australian Scenarios

2.Feed Industry Dedicated Feed Mills

Capital cost \$180M to replace lost capacity – 60 mixed species mills

Increased manuf. cost \$14-22M/annum - lost efficiency

Increased feed delivery costs \$4-11M/annum - dedicated delivery vehicles.

Not likely that dedicated feed milling will be forced on industry through regulation

INDIRECT RESULT OF INCREASING FEED SAMPING AND TESTING

US FDA Feed Ban Rules – Oct 2005

Removal of specific risk materials from the animal feed chain

Cattle > 30 months

Through the removal of SRM's from meat meal, this reduces the risk of cross contamination and need to have dedicated feed mills.

Identifies the critical control point before the point of rendering

•further up the supply pyramid

Potential Australian Scenarios

3. Feed mill options

1. Sequencing and flushing – slows production and increases manufacturing costs, not 100% guaranteed.

2. Cease the manufacture of either monogastric or ruminant – loss of business.

3. Upgrade site to segregate production lines – capital cost

4. RAM free in all feeds – increased raw material cost

We are seeing a combination of responses

Resulting pressure on meat meal, blood meal, poultry meal, fish meal use

FACTORS FAVOURING VEGETABLE MEALS 2. NON GM FEEDS

"The GM food standard requires that the food must be labelled if there is altered DNA or protein in the final product" - FSANZ

Consequently dairy, meat and eggs from animals fed GM feed are not required to be labelled as GM within Australia

GM use in animal feeding is:

- Export trade issue
- Not a regulatory domestic labelling issue
- Not a food safety issue

NON GM FEEDS – <u>Chicken Meat</u>

- 3 Major broiler companies
- Use best endeavours to source non-GM ingredients for poultry feeds
 - meet quality standards
 - available in substantial quantities
 - economically sustainable

"The use of GM Soya in feed does not compromise the absolute GM-free status of the poultry products the company produces. Animals that eat feed with a component of GM Soya are no different to other animals that may have been fed a low GM or GM-free diet" Ingham's GM Policy Statement

Commitment to non GM raw materials significance

- Responded to calls from activists
- Ability to access South American soybean meal, lower cost than US GM soybean meal
- Vegetable meals, animal meals and pulses all non GM

Favours use of non GM Australian vegetable protein meal sources

Non GM and other livestock industries

<u>Dairy</u> – governed by milk processors and meeting export market demands</u>

Varies from nil to no limit

<u>Feedlot</u> - dependent upon beef export destination

<u>Pig</u> - little attention, large use of soybean meal, low level meat exports

FACTORS FAVOURING VEGETABLE MEALS 3. CORPORATE FARMING

•Decline in smaller scale home-mixing – bagged

meal sources

Contract feed supply

•Larger feed mills

Capacity to utilise bulk materials

Forward contract supply

Livestock performance consistency

FAVOURS VEGETABLE PROTEIN MEAL USE

FACTORS FAVOURING VEGETABLE MEALS 4. LIVESTOCK PRODUCTION EXPANSION

	Feed Tonnes				
Livestock Sector	2005	2010	2020		
Pigs	1,698,000	1,785,000	2,052,000		
Poultry	2,730,000	3,059,000	3,976,700		
Dairy	3,010,000	3,310,000	3,972,000		
Feedlots	2,720,000	2,886,000	3,319,000		
Other	450,000	495,000	594,000		
Total	10,608,000	11,535,000	13,913,700		

JCS Solutions estimates

5. Biofuels – impact upon vegetable meals

Ethanol from feed grains -VE IMPACT

Supply of by-products

•Wet distillers grains

•Dried distillers grains 30% protein

Tallow and cooking oils use – reduce lower cost energy source

Canola oil – increased canola meal supply

Implications of Ingredient Availability Factors Favouring Vegetable Meals

	Vegetable Protein Meal Demand			
Livestock Sector	2005	2020		
Pigs	233,000	306,600	353,300	
Poultry	340,600	412,000	526,500	
Dairy	150,000	186,500	222,900	
Feedlots	135,000	147,200	169,700	
Other	33,700	38,600	46,250	
Total	892,300	1,090,900	1,318,650	
INCREASED DEMAND		+ 22.3%	+ 47.8%	

Alternative supply US/S. Amer. soybean meal, animal proteins and/or pulses

