

Rapid genetic gain in blackleg resistance, grain yield and quality in a global spring canola breeding program
 Wallace Cowling

The University of Western Australia National Canola Pathology Workshop

8 / March / 2023

10-year breeding research project at UWA funded by NPZ Germany

Article

Optimal Contribution Selection Improves the Rate of Genetic Gain in Grain Yield and Yield Stability in Spring Canola in Australia and Canada

 Renu Saradadevi ${ }^{1,2}$, Olaf Sass ${ }^{4}$, Brian P. Kinghorn ${ }^{5}$ and Kadambot H. M. Siddique ${ }^{1,2}(\mathbb{D}$

[^0][^1]
Breeding with diversity - a global spring canola breeding program

Diverse global breeding pool

- 50% alleles from EU/CA and 50% from AU
- four cycles of rapid recurrent selection

Two-year cycles

- highly interconnected deep pedigree
- both crossing and selfing in pedigree

$\mathrm{S}_{0,1}$ family selection

 - evaluate breeding value of S_{0} plants based on performance of $S_{0,1}$ families in field plotsFounders EU/CA x AU
Cycle 2:

Cross and self $S_{1} \times S_{1}$

Self the S_{0} progeny

$$
F_{1} \times F_{1}
$$ value of the genotyped

$S_{0,1}$ family performance represents the breeding S_{0} parent
plant

Factor analysis of $S_{0,1}$ family performance in field

 trials in AU and CA in 2016, 2018, 2020

Factor analytic modelling of GxE effects;
accurate predicted breeding values (PBV) across environments; crossing designs by optimal contributions selection (OCS)

Blackleg survival rating 1-9 (VS-VR)

Moderate to high narrow-sense heritability

Trait	Narrow-sense heritability at sites in AU, CA
Grain yield ($\dagger \mathrm{ha}^{-1}$)	0.40 (0.02-0.62)
Days to 50\% flower	0.73 (0.60-0.87)
Plant height (cm)	0.52 (0.36-0.74)
Seed oil (\%)	0.53 (0.33-0.65)
Protein in meal (\%)	0.56 (0.35-0.74)
Glucosinolates ($\mu \mathrm{mol} \mathrm{g}{ }^{-1}$)	0.61 (0.18-0.76)
Oleic acid (\%)	0.83 (0.65-0.94)
Blackleg (Phoma) resistance	0.44 (0.14-0.60)
Seed size (100 seed weight, g)	0.66 (0.43-0.77)

Positive genetic correlations of the additive effects for grain yield across sites/years

Positive genetic correlations of the additive effects for grain yield across sites/years

High genetic correlations of the additive

 effects for blackleg resistance across years

High genetic correlations of the additive effects for seed oil\% across sites/years

Correlations of predicted breeding values across traits

Blackleg resistance
(BL) associated
with high grain
yield

Correlation of PBV

Correlations of predicted breeding values across traits

Selection index composed of multiple traits to achieve desired gains

$$
\left.\begin{array}{rl}
\begin{array}{rl}
\text { Index } \\
(\$ / \mathrm{ha})
\end{array} & =\begin{array}{l}
\text { PBV grain yield } \\
(\dagger / \mathrm{ha}) \times 750 \$ / \mathrm{ha} \\
\\
\end{array}+\begin{array}{l}
\text { PBV seed oil (\%) } \\
\times \text { economic weight }
\end{array} \\
& +\begin{array}{l}
\text { PBV protein in meal (\%) } \\
\times \text { economic weight }
\end{array} \\
& +\begin{array}{l}
\text { PBV blackleg resistance } \\
\end{array} \\
& \times \text { Peconomic weight }
\end{array}\right\}
$$

Economic weights informed by
market prices and desired gains
e.g. negative weight on plant height and DTF

Mating designs from optimal contributions selection (OCS) using "MateSel"

Genetic gain in grain yield as measured by change in predicted breeding values across

- slope $87 \mathrm{~kg} \mathrm{ha}^{-1} \mathrm{y}^{-1}=4.3 \% \mathrm{y}^{-1}$
$=4$ times world average for crops!!
- Iow achieved parental co-ancestry in cycle 4 parents = 0.088
- population mean $=2.02 \dagger \mathrm{ha}^{-1}$
- mean grain yield increased from 1.82 to 2.15 t hal $^{-1}$ over 4 years

Genetic gain in grain yield in the population is triple that in control varieties in same trials

Rapid genetic gain in blackleg (Phoma) resistance (1-9 scale, VS - VR)

High genetic gain in PBV blackleg score per year:
slope 0.42 score units $\mathrm{yr}^{-1}\left(8.3 \% \mathrm{yr}^{-1}\right)$
population mean Phoma score increased from 4.9 (MS) to 6.6 (MR) from 2016 to 2020

Very rapid genetic gain in blackleg (Phoma) resistance in population

Blackleg resistance associated with late flowering and tallness: select against

Genetic gain in seed oil\%

Seed oil\% increased from 43.8 to 44.8% over 4 years

Genetic gain in protein in meal \%

population mean $=41.1 \%$

Protein in meal\% increased from 41.2 to 41.9% over 4 years

Conclusions

Blackleg is moderately heritable and strongly correlated to grain yield, and both show a rapid response to selection:
*** $+8.3 \%$ p.a. genetic gain in blackleg resistance ($h^{2}=0.44$)
${ }^{* * *}+4.1 \%$ p.a. genetic gain in grain yield $\left(h^{2}=0.40\right)$
*** be careful to control negatively correlated traits such as later flowering and tall height!!

Four principles of breeding with genetic diversity

Breeding values with high accuracy Rapid cycles
Index of multiple economic traits Optimal contributions selection

Breeding for the future depends on genetic diversity now....

Diverse breeding populations will respond to selection for heat stress tolerance, and resistance to new diseases...

RECENT TEMPERATURE TRENDS (1990-2020)

Contributors to the research

Dr Li Li AGBU, UNE

THE UNIVERSITY OF WESTERN
AUSTRALIA

Thank you

...and please ask questions!

[^0]: 1 The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
 2 UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
 3 Animal Genetics and Breeding Unit, University of New England, Armidale, NSW 2351, Australia
 4 Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363 Holtsee, Germany
 5 School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia

 * Correspondence: wallace.cowling@uwa.edu.au; Tel.: +61-8-6488-7979

[^1]: Abstract: Crop breeding must achieve higher rates of genetic gain in grain yield (GY) and yield
 stability to meet future food demands in a changing climate. Optimal contributions selection (OCS)

